\\w

SkillsCompétences
Canada Ontario

Skills Ontario: Cloud Computing Contest Sample Challenge

aws
Amazon Cloud

us-east-1 us-west-2

Static Web
Application
Hosting Bucket

1
<
2 3"’ 4—\ A ata Repicatio A
— @
Client Browser Amazon API Flies Uplcaq Function Prima Backup
Gateway Docut nems Documents
i Storage bucket Storage bucket

A

A B

LabRole CloudTrail
CloudWatch Logs 3 Access logs

Tasks and Duration

e The assignment features 3 modules. Each module can be implemented using AWS Management
console or using Infrastructure as Code (Terraform or CloudFormation) for the extra marks.

Restrictions and Limitations

@ Region Limitations: Operations must be confined to us-east-1 for primary activities and
us-west-2 for disaster recovery replication.

e Budget Constraints: Design and implement solutions within a $10 budget for the
duration of the task to avoid exceeding the allocated AWS budget.

Module 1: Secure Document Storage System (Gateway
DataSecure Inc.)
Scenario

Gateway DataSecure Inc., a cybersecurity firm, needs a secure, scalable document storage

Page 1 of 11

system for sensitive client data. The system must comply with regulations (e.g., HIPAA, GDPR)
and support encryption, lifecycle management, versioning, and disaster recovery. You will
implement this system using Amazon S3 and provision it using Infrastructure as Code (laC).

Page 2 of 11

Objective:
Build and provision a secure document storage solution using AWS S3 that meets the following
requirements:

e Enforce encryption at rest (SSE-KMS) and in transit (HTTPS)
e Implement lifecycle policies for cost optimization

e Enable versioning and cross-region replication (CRR)

e Set up monitoring via AWS CloudTrail

e Automate deployment using Terraform or CloudFormation

Tasks
Task 1: Secure S3 Bucket

e Createa bucket named: gateway-datasecure-inc-docs-XXXXinus-east-1
e Enable SSE-KMS encryption using a KMS key (with key rotation)

Task 2: Bucket Policy

e Enforce HTTPS-only access via a bucket policy
e Grant permissions to the pre-provided LabRole

Task 3: Lifecycle Management
e Addrules to:

o Transition data to S3 Standard-IA after 30 days
o Transition to S3 Glacier after 90 days

Task 4: Disaster Recovery
e Enable versioning
e Createareplica bucket named gateway-datasecure-inc-crr-XXXXin us-west-2
e Configure cross-region replication using the ReplicationRole

Task 5: Monitoring and Audit

e Enable AWS CloudTrail logging for all S3 operations on the primary bucket

Infrastructure as Code Implementation (Module Extension)

Page 3 of 11

You must implement all of the above using Infrastructure as Code:

e Use either Terraform or CloudFormation

e Include modular code (grouped logically by purpose)

e Reference provided IAM role ARNs (you are not allowed to create new IAM roles)
e Follow naming conventions and region constraints

Submission Checklist

Submit the following:

1. laC Code:

a. Terraform: main.tf, variables.tf, etc.

b. OR CloudFormation: YAML/JSON templates
2. README.md or PDF including:

a. Tool choice and rationale

b. Deployment instructions

c. Assumptions (e.g., manual steps, IAM ARNs)
3. Screenshots or CLI output confirming:

a. Bucket creation

b. KMS key setup

c. Lifecycle rules

d. Replication setup

e. CloudTrail logging
Validation

Before submission, verify that:

e SSE-KMS encryption is active

e HTTPS-only access is enforced

e Lifecycle rules are correctly implemented

e Cross-region replication is operational

e CloudTrail is logging S3 API activity

e |AM roles were not created manually

e Naming, region, and budget rules are followed

Page 4 of 11

Module 2: File Upload Interface for "Gateway

DataSecure Inc Portal" via simple Web Application

Background

Following the successful implementation of a secure storage service in Module 1, "Gateway
DataSecure Inc." seeks to enhance its digital capabilities by integrating a simple, user-friendly
interface for its clients. This interface will facilitate the secure uploading of various document
types (such as .doc, .txt, .pdf, .ppt) directly to the AWS S3 bucket, ensuring that client
interactions are both intuitive and secure. The company aims to streamline the process by
which clients submit sensitive documents, which are often related to critical cases and require
stringent confidentiality and swift handling.

Objective

Design and deploy a secure, browser-based interface that allows clients to upload documents with
metadata to a structured S3 path. You will deploy the interface as a static website, configure secure
uploads, and implement infrastructure using Infrastructure as Code (laC).

Detailed Requirements

1. Create and configure the S3 Bucket to host your static web application
Create a new S3 bucket with the name: “skills-ontario-2025-[yourname]-web-v1". Replace [yourname]’
with your actual name (e.g., ‘johnsmith’).

2. Deploy the Web Application

The folder upload_to_s3 contains a simple static web app.
Upload all files from the upload_to_s3 folder to your skills-ontario-2025-[yourname]-web-v1 S3 bucket.

Confirm that the application loads correctly in a browser using the static website endpoint.

3. Modify the Application to Upload Files to S3

Configure the app to upload user-selected files skills-ontario-2025-[yourname]-web-v1 bucket.
The application must:

e Accept user file input
e Collect client ID, case ID, and document type
e Upload the file to a structured key like:uploads/{clientld}/{caseld}/{documentType}/{filename}

4. Implementation with Infrastructure as Code
Use Terraform or CloudFormation to:
e (Create the S3 bucket with static website hosting.

Page 5 of 11

e Configure all bucket settings

e Deploy the static website files to S3 using 1aC (Terraform aws_s3_bucket_object, or
CloudFormation AWS::S3::Bucket + custom resources).

5. Submission Requirements
In your report, include the following:

e Ascreenshot of the web app in your browser showing the success message.
e Ascreenshot of your S3 bucket file listing showing the uploaded document(s).

e A screenshot of successful deployment using laC

Create a table that describes all modifications you made to:

e The HTML/JS application
e AWSinfrastructure (S3 policy, CORS, etc.)

Example (for the demonstration purposes only, these are _not_ real changes):

Component Change Made Reason
Index_to_s3.
hrjcmelx_ 0_s Updated script.js with bucket name Ensure correct upload target
script j
P - Added encryption of the object in transit O_bj_ects are uploaded to 53
to_s3.js via insecure channels

Write a short paragraph discussing:

e What are the security risks with the current solution (e.g., hardcoded credentials, public
bucket)?

e What would be better practice?

e Choose one improvement below and implement it (e.g., switch to pre-signed URLs, restrict

access, move credentials to environment variables).

@)

O
O
O

Submission

Replace hardcoded credentials with temporary credentials using AWS STS.
Implement file validation in the frontend (limit types and sizes).

Use pre-signed URLs to avoid exposing bucket write permissions.

Restrict S3 bucket access using a bucket policy with allowed referrers.

Submit the following:
e Markdown report (README.md or .pdf) containing:
e Screenshots

e Change table

Page 6 of 11

e Security discussion and enhancement
e Deployed and working website (link to your S3 static website endpoint)

Module 3: File Upload Portal with Environment-Specific API
Gateway and Metadata Storage in DynamoDB

Scenario

Gateway DataSecure Inc. is expanding its file submission system to support multiple
environments (development and production) with secure and auditable document uploads.
Clients will submit sensitive documents through a simple web portal. Uploaded files will be
stored in S3, and metadata will be processed and recorded in DynamoDB to support audit,
retrieval, and compliance workflows.

Objective

Build and deploy a secure, environment-aware document upload system using the
upload_via_gateway/ folder. Your solution must include:

e Afrontend hostedin S3

e Backend implemented with APl Gateway and Lambda for both dev and prod
environments

e Metadata for each uploaded file stored in DynamoDB

e Proper IAM permissions, error handling, and logging across the stack

Page 7 of 11

Requirements
1. Provided Code and Environments

e Usecodeinthe upload _via gateway/ folder:

o frontend/: web portal for file uploads

o backend/: Lambda function template for processing uploads
e Set up two environments:

o dev: used for testing
o prod: simulates a production deployment

2. Frontend Hosting

e Hostthe frontend/ code in an S3 bucket with static website hosting enabled
e The portal must:

o Validate allowed file types: .doc, .txt, . pdf, .ppt
o Limit file size to 2MB

o Require metadata input fields: C1ientID, CaseID, DocumentType
o Display upload result (success or error)

3. APl Gateway Setup

e Create an APl Gateway with:
o Two stages: dev and prod
o Separate Lambda integrations for each stage (use environment variables or

aliases)
o CORSenabled
o HTTPS enforced

o Logging enabled per stage

4. Lambda Processing (Per Environment)

Each environment must have its own Lambda function that:

e Validates file size and type
e Uploads the file to S3 under:

uploads/{ClientID}/{CaseID}/{DocumentType}/{filename}

Extracts and stores metadata in DynamoDB:
O ClientID (partition key)
© CaselID (sort key)

Page 8 of 11

DocumentType
Filename
FileSize (bytes)
UploadTime (ISO format)
o UploadLocation (S3 path or URL)
e Implements error handling:
o Rejects missing or invalid inputs
o Logs processing steps and errors to CloudWatch
o Returns appropriate HTTP response codes

0 O O O

5. DynamoDB Metadata Table

e Create a DynamoDB table named DocumentMetadata
e Keys:
o Partitionkey: ClientID
o Sort key: CaseID
e Store one record per uploaded file with all metadata attributes
e Ensure efficient querying by ClientID and CaseID

6. Security and IAM

Use HTTPS for all frontend-to-backend communication
Do not hardcode credentials

Use the provided LabRole for all Lambda permissions
Grant only required access to S3 and DynamoDB

Tasks
Task 1: Static Web Hosting

e Upload frontend/ to an S3 bucket

e Configure static website hosting

e Ensure the portal sends file uploads to the correct API Gateway endpoint (based on
stage)

Task 2: APl Gateway and Stages
e Create REST APl with POST /upload route
e Deploytwo stages: dev and prod

e Link each stage to its corresponding Lambda function

Task 3: Environment-Specific Lambda Functions
Page 9 of 11

e Deploy a Lambda function for each environment
e Use environment variables for configuration (e.g., table name, bucket name)
e Ensure the function handles:
o File validation
S3 upload
Metadata insertion into DynamoDB

Logging

o O O

Task 4: DynamoDB Table Setup

e Create a table with:
o Partition key: ClientID
o Sort key: CaselD
e Populate metadata with each upload
e UseUploadTime and Filename as additional attributes

Task 5: Test and Document

e Testboth dev and prod workflows
e Submit the required deliverables

4. Implementation with Infrastructure as Code

Use Terraform or CloudFormation to:
e (Create the S3 bucket with static website hosting.
e (Create APl Gateway woth dev and prod environments
e Create and deploy lambda function

Submission Requirements

e URLs:

o S3-hosted frontend

o APl Gateway endpoints (dev and prod)
e Screenshots:

o Successful upload through the Ul

o S3file structure

o DynamoDB entry
e Source code:

o Lambda functions (dev and prod)

o Modified frontend (if applicable)

o Infrastructure as code implementation

Page 10 of 11

e README .md or PDF:

(@]

©)
@)
@)
@)

Configuration steps

How dev and prod are separated

Metadata schema description

API sample request/response

Summary of security and logging implementation

Page 11 of 11

